Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions.

نویسندگان

  • H Gómez-Couso
  • M Fontán-Saínz
  • C Sichel
  • P Fernández-Ibáñez
  • E Ares-Mazás
چکیده

OBJECTIVE To investigate the efficacy of the solar water disinfection (SODIS) method for inactivating Cryptosporidium parvum oocysts in turbid waters using 1.5 l polyethylene terephthalate (PET) bottles under natural sunlight. METHODS All experiments were performed at the Plataforma Solar de Almería, located in the Tabernas Desert (Southern Spain) in July and October 2007. Turbid water samples [5, 100 and 300 nephelometric turbidity units (NTU)] were prepared by addition of red soil to distilled water, and then spiked with purified C. parvum oocysts. PET bottles containing the contaminated turbid waters were exposed to full sunlight for 4, 8 and 12 h. The samples were then concentrated by filtration and the oocyst viability was determined by inclusion/exclusion of the fluorogenic vital dye propidium iodide. Results After an exposure time of 12 h (cumulative global dose of 28.28 MJ/m(2); cumulative UV dose of 1037.06 kJ/m(2)) the oocyst viabilities were 11.54%, 25.96%, 41.50% and 52.80% for turbidity levels of 0, 5, 100 and 300 NTU, respectively, being significantly lower than the viability of the initial isolate (P < 0.01). CONCLUSIONS SODIS method significantly reduced the potential viability of C. parvum oocysts on increasing the percentage of oocysts that took up the dye PI (indicator of cell wall integrity), although longer exposure periods appear to be required than those established for the bacterial pathogens usually tested in SODIS assays. SODIS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water.

AIM To determine whether batch solar disinfection (SODIS) can be used to inactivate oocysts of Cryptosporidium parvum and cysts of Giardia muris in experimentally contaminated water. METHODS AND RESULTS Suspensions of oocysts and cysts were exposed to simulated global solar irradiation of 830 W m(-2) for different exposure times at a constant temperature of 40 degrees C. Infectivity tests wer...

متن کامل

Innovative Technologies for Waste Water Disinfection and Pathogen Detection

New and improved methods are needed to disinfect pathogens in treated wastewater, especially highly resistant ones like Cryptosporidium parvum oocysts. In addition, new and improved methods are needed to detect pathogens and indicators for them in wastewater in order to monitor the efficacy of disinfection and other waste water treatment processes. Spores of the anaerobic bacterium Clostridium ...

متن کامل

Effect of batch-process solar disinfection on survival of Cryptosporidium parvum oocysts in drinking water.

The results of batch-process solar disinfection (SODIS) of Cryptosporidium parvum oocysts in water are reported. Oocyst suspensions were exposed to simulated sunlight (830 W m(-2)) at 40 degrees C. Viability assays (4',6'-diamidino-2-phenylindole [DAPI]/propidium iodide and excystation) and infectivity tests (Swiss CD-1 suckling mice) were performed. SODIS exposures of 6 and 12 h reduced oocyst...

متن کامل

The effect of cyanuric acid on the disinfection rate of Cryptosporidium parvum in 20-ppm free chlorine.

Cyanuric acid is used to stabilize free chlorine to reduce photodegradation in outdoor swimming pools. While there have been numerous studies examining its effect on the disinfection rates of bacteria and viruses, it is not known whether cyanuric acid can significantly impact the effectiveness of hyperchlorination for inactivating Cryptosporidium oocysts present in fecally-contaminated swimming...

متن کامل

Detection and enumeration of Cryptosporidium oocysts in environmental water samples by Real-time PCR assay

Introduction: The protozoan parasite, Cryptosporidium Spp., widely spreads in both raw and drinking waters. It is the causative agents of waterborne diarrhea and gastroenteritis in the world. In the present study, a molecular assay was used for the detection and quantification of Cryptosporidium oocysts in environmental water samples. Materials and methods: Thirty surface water samples wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tropical medicine & international health : TM & IH

دوره 14 6  شماره 

صفحات  -

تاریخ انتشار 2009